cultural Department, Washington, March 16th, and the St. Louis Academy, March 17th, 1863.

Donations for the Library were received from Mr. Edward Miller, the Bureau of Mines at Paris, the London Meteorological Society, Royal Geographical Society, and Society of Arts, the Scottish Antiquarian Society, the Laval University at Quebec, Mr. Henry Hall, of Rutland, Vermont, the New Bedford Free Public Library, Silliman's Journal, the Franklin Institute, the Pemnsylvania Historical Society, and the Cincinnati Young Men's Mercantile Library Association.

Professor Lesley read the following communication from President J. W. Dawson, of McGill College, Montreal.

Note on Mr. Lesley's Paper on the Coal-Measures of Cape Breton.

The new facts and general considerations on the Nova Scotia coalfield contained in this paper, are of the highest interest to all who have worked at the geology of Nova Scotia. I think it my duty, however, to take exception to some of the statements, which I think a larger collection of facts, would have induced Mr. Lesley himself to modify. My objections may be stated under the following heads.
(1.) It is scarcely safe to institute minute comparisons between the enormously developed coal-measures of Nova Scotia, and the thinner contemporary deposits of the West, any more than it would be to compare the great marine limestones of the period at the West, with the slender representatives of the part of the group to the eastward.
(2.) There is the best evidence that the coal-measures of Nora Scotia never mantled over the Devonian and Silurian bills of the Province, but were on the contrary, deposited in more or less separate areas on their sides.
(3.) Any one who has carefully compared the coal-measures of the Joggins with those of Wallace and Pictou, must be convinced of the hopelessness of comparing individual beds, even at this comparatively small distance. A fortiori detailed comparisons with Pennsylvania and more distant localities must fail.
(4.) I do not think that any previous observer has supposed that the coal-measures of Eastern Cape Breton represent the whole of the
coal formation of Nova Scotia. The "Upper coal-measures" of my papers on Nova Scotia are eertainly wanting, and probably the Sydney coal-field exhibits no beds higher than the middle of No. 4 of Logan's Joggin section.
(5.) The whole of the coal-beds in the Joggin section belong to the Upper and Middle coal-measures. It is quite incorrect to identify No. 6 of Logan's section with the Lower coal-measures. These do not occur at the Jogrgins, but are found in Nova Scotia, as in Virginia and Southern Pennsylvania, at the base of the system, under the marine limestones. The Albert beds are the equivalents of these Lower measures, and not of the Pictou coal. In my paper on the Lower Carboniferous coal-measures (Journal of Geological Society of London, 1858), will be found a summary of the structure of the Lower coal-measures, as shown at Horton Bluff, and elsewhere. The term "truc coal-measures," quoted by Mr. Lesley, does not mean in my description, the Middle coal-measures, but merely that part of them holding the workable coal-seams.
(6.) Whatever may be the value of M. Lesquereux's applications of the fossil flora to the identification of coal-seams in the West, I am prepared to state, as the result of an extensive series of observations, still for the most part unpublished, that in Nova Scotia, the flora is identical throughout the whole enormous thickness of the Middle coal-measures, and that the differences observable between different seams, are attributable rather to difference of station and conditions of preservation, than to lapse of time. It is, indeed, true, as I have elsewhere explained, that the assemblages of species in the Lower, Middle, and Upper coal-measures, may be distinguished ; but within these groups the differences are purely local, and afford no means for the identification of beds in distant places.
(7.) I do not desire to offer any opinion on the questions raised by some American geologists, as to the extension of the term carboniferous to the Chemung group; but I know as certain facts, that the flora of the Lower coal-measures, under the marine limestones and gypsums of Nova Scotia, is wholly carboniferous, and that the flora, on which alone I consider myself competent to decide, of the Chemung of New York, as now understood by Professor Hall, and others, and also of the groups in Pennsylvania, named by Rogers, Vergent, and Ponent (? IX and X of Mr. Lesley), is as decidedly Devonian, and quite distinct from that of the carboniferous period.*

[^0]For Mr. Lesley's ability as a stratigraphical geologist, I have the highest respect; and with reference to the present subject, mould merely desire to point out that he may not have possessed a snfficient number of facts to marrant some of his generalizations, on which in the meantime I would, for the reasous abore stated, desire geologists to suspend their judgment.

J. .IV Dawson.

McGill College, Montreal,
February 18th, 1 S63.
Mr. Lesley remarked that he read this commmication of his friend, Professor Dawson, with great pleasure, as it would prevent any mistake about the nature and importance of the discussion, and any undue weight being attached to his own suggestions: that no one was more conrinced than himself that there could be no excuse for dogmatism where so little was known. and therefore, that he had intended rather to suggest than to defend those opinions expressed in his paper. which had drawn down so earnest and raluable a caveat from so high a source. To defend them would require long and systematic researches on the ground. if even then, the too easily accepted present standpoint of pataontology would not hide the truth from view behinl immovable obstacles. So long as apparent specific ilentity in organic forms continues to be accepted as the supreme test of stratigraphical horizon, discord is inevitable. When palieontology is prepared to return under the mild dominion of her mother, lithologr, which she has at least one-half repudiated, geology will adrance more rapidly in her work.

Professor Dawson's first objection is a begring of the very question, Whether the coal-measures of Nova Scotia are "enormously developed." That, in one little spot of the earth's surface like Nova Scotia, and that too midray between the great coal areas of America and those of Europe, wherein the thickness of coal-measures proper range from 2000 to 5000 feet, if they eren attain the latter size, there should be an anomalous deposit of 25.000 feet, is incredible. What the great Bohemian palrontologist, by unerring instinet, said to us after our thirty years" war orer the 'laconie system, there must be a mistake somevhere, I must repeat to those who so "enormously develop" the Sora Scotia coal-measures. And my inten-
tion in the paper on Nova Scotia coal was only to suggest one formula on which the error might be discussed. I distinetly repudiated the safety of instituting " minute comparisons." My comparison of the Cape Breton coals and the column at Pittsburg, was carefully made in the most general manner, and the resemblance called a coincidence. But the value of the comparison remains; for it affords a new argument in favor of the family likeness of those parts of the general coal-measures of different countries, which have a right to the specific title of "productive coals." The argument also remains good, that if 2000 feet of coal-measures in Missouri can be recognized in 2000 feet of coal-measures in Kentucky, Virginia, and Eastern Pennsylvania, the very same system of beds, bed for bed, being demonstrated first by stratigraphy, and then by palæontology (and such is the fact), why not in Nova Scotia? Even granting (3) that sufficient skill and care and opportunity combined have hitherto failed to identify the coals of the Joggins with those of Wallace and Pictou, there is still hope at the bottom of the box. Before Lesquereux perched himself like a Simon Stylites on the slack heap at the mine's mouth, our own identification of individual beds was very imperfect, and the search for a complete system of identification had been abandoned with the same sense of hopelessness. But how is it now? There certainly may be special difficulties in Nova Scotia; there are such at Pottsville ; in Nichigan ; but they are exceptions which prove the rule, instead of affording an a fortiori argument against it.

I have no doubt that some of the coal-measures of the British Provinces may have been "deposited in more or less separated areas on the sides of the Devonian and Silurian hills," as Professor Dawson says (2). But I coufess to a complete scepticism of the great extent which has been assigned to this nonconformability of the coal-measures upon the Lower Rocks ; first, because most of the Island of Cape Breton, and much of the surface of Nova Scotia and New Brunswick are confessedly unstudied and almost unknown; secondly, because the incredible thickness assigned to the coal-measures, throws doubt upon the positions assigued to the nonconformable horizons; thirdly, because the coal-beds themselves stand almost rertical in many places round the shores; fourthly, because the mountains of Nora Scotia, with apparently conformable carboniferous limestones, have apparently an Appalachian structure and aspect, have suffered vast denudation, exhibit cliff outcrops and section ravines, and may just as well have carried coal upon their original backs, as we can prove that our Tussey, Black Log, Nescopec, Mahoning, Buffilo, Tuscarora,

Brush, and other Silurian and Devonian mountains did. There is an immense nonconformable chasm in the column rest of the Hudson River, and the Catskill Mountains over it have no coal upon their backs; but the coal comes in regularly enough on them at the Lehigh, (a less distance than from Sydney to St. Peters, or from Pictou to Windsor), and the nonconformability in the Upper Silurian and Devonian has already disappeared.

Professor Dawson's fourth objection would be good, if I had really "supposed the coal-measures of Eastern Cape Breton to represent the whole of the coal-measures of Nova Scotia." But I only sug. gested that they may prove to be the equiralents of the system of productive coal-measures; that is all. Between the Monongahela and the Ohio, our column of productive coals is capped by another of barren shales and soft sandstones of unknown height, by one estimate 3000 feet thick ; and part of this column may represent the so-called Permian measures, which, in Kansas, cap conformably the coal-measures. Haring no knowledge of the fossils, I hase no desire to oppose the conclusions of Professor Darson, as to the part of the column of the Joggins to which the Glace Bay coals apply, but hope that his accurate handling of them will secure some certainty about it. It was the grouping of the beds, and not the fossils, which I wished to bring into prominent notice ; because the doctrine of isolated basins, when unfounded or orerapplied, is as injurious to lithological truth, as the careless identification of surface aspect may at any moment prove to palæontology. I willingly leave to accomplished palæontologists like Professor Dawson, the discussion of the grand generalization embodied in his sisth objection ; but I may be permitted to beliere that it has had its birth in the doctrine of isolated basins, and that the two must stand or fall together. It also seems to me to involve radical inconsistencies; fur if I comprehend it, it asserts, 1. That the flora of the whole coal-measures (25,000 feet?) is identical ; that is, the rertical distribution of each and all the plants is complete from the bottom to the top. 2. That nerertheless, there are differences obserrable betreen different coal-beds. 3. That these are attributable rather to difference of station and conditions of preserration, than to lapse of time; that is, if we could take the beds, each one in its whole extent and its fossils in their original condition, there would be no differences observable between different seams after all. 4 . That groups or assemblages of species in the Lower, Middle, and Upper coal-measures may nevertheless be distinguished ; that is, while each and every species may be found occasionally in all parts of the
column from bottom to top, yet this happens in such a manner as to group some of them more abundantly, or in certain peculiar proportions in the Lower, others in the Middle, and others in the Upper portions of it. 5. That, after all, however, these groups are not persistent, but differ at different localities, and are as worthless as the specific forms themselves for the identification of a single bed in more than one place.-Is it possible that all this has been made out, or can be made out, except in a country of horizontal coal-measures, well opened for study, where the stratifieation can be established beforehand, and the range of the fossils be doubtless?

In conclusion I would say, that the want of clearly defined and applied names is a drawback to sueh a discussion. The discussion is in fact initially one of names, viz., how far down the name Carboniferous must be carried; what are the Lower coal-measures, de. But in the end, it is a question of vital importance to the value of the paleontologieal imprimatur upon stratigraphieal and structural deductions from field work. Is the diseovery of specific forms to keep all our geological nivernux in a perpetnal mirage-flicker? Are we never to know from day to day, whether we are at work in Devonian or Carboniferous, in Trias, (Dyas,) or Lias? Why not at once obey the marriage law of the weaker sex, and give up our names for our lord's? Let geology forget the virgin nomenclature of her youth, and rewrite her books with such titles for her chapters as these: "The Spirifeferous Formation; The Lepidodendriferous Formation; The Lower Thecodont ; The Middle Baculite ; The Upper Pterodactylian Formations." Why has this not already been done? Simply because it cannot be done. No palæontologist has yet been bold enough even to propose it. Yet as I believe, the 25,000 feet of coalmeasures in the British Provinces, will be found to be one of the many uneonscious realizations of this idea, when no one can be found to nominate it openly. The whole palaozoic system at its thickest place in Southeast Pennsylvania and Middle Virginia, is but 35,000 feet. It is not unreasonable then to suggest, if not to affirm, that the rast eolumn of so-called coal-measures in Nova Seotia will take in all that part of the paloozoic column which has furnished coal, and that is from the top downwards nearly to the Upper Silurian, as Plate II will show.

A letter was received from Dr. C. M. Wetherill, containing some notice of his observations on the deterioration of ether from age, and its absorption of fusil oil in the special instance described.

Departmext of Agriceltere,
Washingtos, D. C., March 16th, 1863.

To Sec. Am. Phil. Soc., Philada.

Dear Sir: I have lately made an observation in my laboratory, which I desire to have recorded, as throwing light upon the deterioration of ether by age. 1 have communicated it to Dr. W. G. T. Morton, who deems it very interesting in its relation to anæstbesia. The subject is worthy of a further examination, which my officitl duties at present forbid.
I brought with me from Ohio a quart bottle of ether, half of which had been used in the course of former chemical investigations, and which had been found pure. The bottle was stopped with cork, through which the evaporation was too slow to be perceptille. About three month ago, this bottle, by a mistake of measurement by the carpenter in the glass case provided for my chemicals, came in juxtaposition with three quart bottles of pure fusil oil. The latter was contained in glass stoppered bottles, the stoppers covered with bladder. One of these bottles had been opened to demonstrate the properties of fusil oil in connection with spirits, and was replaced without restoring the bladder. After this the odor of fusil oil was very perceptible in the neighborhood of the case. About three montbs later, the ether bottle was taken, and a portion of its contents used for determining the amount of fusil oil in wines and brandies, when it was at once discorered that the ether itself contained fusil oil. On permitting the spontaneous evaporation of the ether in a watch-glass, the oil was obserred in abundant glolules, the odor was that of amglic alcohol, and the irritating action upon the cuticle of the nose accidentally touching it was very strong. Very pressing official duties prevented a chemical examination by analysis of the oil absorbed by the ether, but the odor was alone sufficient to trace it to the fusil oil bottles. The ether had not been employed until used for the wine and brandy experiments, and had certainly not been meddled with by anybody. The only explanation I can give of the phenomena is, that the bottle of ether standing in an atmosphere of amylic alcohol rapor, had received the latter through the
pores of the eork, according to the laws of the diffusion of gases. If this view of the matter be correct, I can readily imagine how a bottle of ether might come into a position to absorb substances which might prove very injurious in cases of anæsthesia.

Yours, very respeetfully, Charles M. Wetierill, Chemist, Department of Agriculture.

Mr. Chase resumed the discussion of similar forms and meanings between the Chinese characters and the classical alphabets. While admitting that some of the resemblances might be accidental, he could not believe that they were all so. The pointings in a uniform direction are so numerous, that if the attention of scholars who are able to study the Chinese movements on their own soil could be fully aroused, important results might reasonably be looked for. The general character of these pointings was illustrated by the following remarks.
a. Most of the Chinese syllables that end in the sound of i (English \bar{e}), are pronounced i by some of the natives, and ai (English i) by others, thus indicating the possible provincialisın, that established the peculiar sound of the letter i in our language. One of the Chinese characters that represent this sound, resembles a small e in its ordinary form, while in the running hand it has the two forms of our written I and E. [See Plate I, fig. 1.]
b. Some of the Chinese hieroglyphs have both the form and the phonetic value of the modern script. Thus the radical for tooth, Ya, has the form of Y, Tsze, of Z (German tseth); Shan, of Hebrew shim, and Russian sha ; Fow, of German fow ; \&c. [Pl. I, fig. 2.]
c. Not only are isolated letters found in Chinese, but also combinations of letters in syllables that retain a pronunciation similar to that indicated by the phonetic value of the letters. For example, the syllable $k i$ ($\mathbf{E n g} . \mathrm{k} \overline{\mathrm{e}}$, or kī), is sometimes written in the following ways, to indicate three different meanings; $\mathscr{E} \mathscr{E}$ or \mathscr{O} $\mathfrak{1 i} 1$, 12 N, [Pl. I, fig. 3], and each of these forms can be readily traced to the primitive radicals of which it is composed. The resemblance of the last form to the German $\mathfrak{i N}$, as well as the retention of Chinese names for German letters, is suggestive of the resembclane that exists in the angular character of the Chinese and German texts.
d. The phonetic values of the primitive hieroglyphs, are sometimes apparently retained through a succession of different forms. The Chincse radical Tu, for example, which denotes "the earth," may be analyzed into two simple radicals, one of which corresponds to an ancient form of T, and the other is De Guignes' supposed representative for U, which resembles one of the Egyptian hieroglyphs for O and U. [Pl. I, fig. 13.] This radical is sometimes written in the form of T placed in U, and sometimes like a t connected with a V in such a way as to make an Arabic figure 2. [Pl. I, fig. 4.] Moreover, the root $t u$, in Chinese as well as in Sanscrit, embraced the idea of division among its meanings.
e. Some of the radicals are represented by two or more different forms that are found in two or more different alphabets. Thus the "mouth" radical is sometimes written in the form of Roman \forall, sometimes of the Greek J. The word pi, "to assist," is written with two Greek π 's, accompanied by a Roman P. [Pl. I, fig. 5.]
f. In most alphabets, forms nearly identical are employed to represent different letters, as in English E F ; d b;pq;nn; Roman P, Greek P, and Hebrew p. Many of these resemblances are found in Chinese, and a reference to the original hieroglyphs often suggests a plausible explanation of the resemblances.
g. If the fertility of resemblance between the Chinese and other alphabetic forms, is often confusing and puzzling, it is no more so than the similar fertility in systems that are purely alphabetic. Such instances as the employment of X to represent the sounds of T, Ch, and X in the Phenician, Greek, and Roman alphabets respectively, —of P for the sounds of $\mathrm{P}, \mathrm{Ts}, \mathrm{Q}$, and R , \&.e., -are so numerous that there is probably not a single alphabetic form that has not been appropriated at different times to several different letters, and there is not a single letter that does not present in its various forms, analogies to nearly half the other letters of the alphabet.
h. These resemblances are sometimes readily accounted for by their phonetic analogies. Thus L and R, B and P, C and G, sound so nearly alike, and are so often confounded, that one would naturally expect them to be represented by similar forms. But there are some curious instances of remoter affinity. For example, among the oldest Phenician inscriptions, the outline of something like a stone hatchet, is used to represent both D and R. These two sounds are to this day confounded by some of our Indian tribes. Most of the Dakotahs are unable to sound cither L or R , and they invariably substitute D for each of those letters. The Chinese Taou, a knife,
with an outline resembling the Hebrew λ, seems naturally connected, both by its form and phonetic value, with the Phenician hatchetshaped D and R.
i. The use of similar symbols for different radicals, seems sometimes to point to a still older primitive. In this way the supposed Egyptian equivalent for the $ש$, is connected with the Chinese symbols for Mountain, Mouth, Tooth, and Hand, perhaps through the intermediate idea of piercing, or projecting. [Pl. I, fig. 6. The first symbol is Egyptian, the others Chinese. The third form is cmployed by the Chinese, both for "mountain," and for " mouth."]
2. An apparent association with other supposed hieroglyphics, may be indirectly traced in some Chinese compounds, when such a connection would hardly be suspected in the simple elements. Thus the letter \mathscr{f} in Chinese represents a wheeled vehicle. The Hebrew 2 is supposed to have been derived from the outline of a camel's head and neek. The Chinese have a character Ko, which when joined to the radical Ma, "a horse," is pronounced Lo, and signifies "a camel." The same character Ko, when joined to the radical Chay (which is represented by G), signifies "wagon." The form G can be derived even more easily from the Chinese hieroglyphic representation of a vehicle [Pl. I, fig. 7], than the form 2 from the hieroglyphic of a camel. There are many other indications that the third letter of the alphabet at first signified "a carrier."
l. Some of the Chinese literal analogues appear to furnish an onomatopotic clue to the shape of the letters, that is wanting in the significance usually attached to the various ancient alphabets. When we are told that means "hand," and "hollow hand," there seems to be no natural connection between the sound and sense. But when we find that in Chinese, Ya signifies "teeth; the parting branches of a tree; anything forked;" and that its hieroglyphic representative is Y , while Keen, "to gape," is represented by K, the natural position of the mouth when one is gaping, or calling attention to the teeth by signs is represented by the forked portions of those letters.
m. The Chinese characters are not all ideographic. Some of them are evidently combined phonetically, according to fixed rules of spelling, and others may probably, as M. de Guignes suggests, be composed of a number of alphabetic elements, that spell Hebrew, Phenician, and other ancient words. M. de Guignes elaimed that he could spell, according to his system, over five hundred Chinese words, but unfortunately he appears to have left no record of any
except the few which he introduces to illustrate his memoir. By means of the few conjectural letters that he has given, a number of words may easily be found that tend to corroborate his views, and although the evidence that they give is by no means conclusive, it is sufficiently curious and interesting to tempt one to farther investigation.*
n. The Chinese writing contains all the elements of the alphabetic letters,- the horizontal line, the perpendicular, the oblique, the hook, the curve, the point, -and to each of these elements it attaches a special meaning. The same reason that lcads us to infer the antiquity of an alphabet, from the fact that each of its letters retains a certain significance, would, a fortiori, indicate the still greater antiquity of a system that retains a meaning not only for every letter, but for every element of each letter.
o. Through the study of the Chinese hieroglyphs, the number of radicals may be greatly reduced, and an alphabet might perhaps be compiled, no more extensive than our own, from which all the characters of the language could be formed by combination, according to simple rules. The whole number of primitive hieroglyphs does not probably excecd eighty, \dagger and many of these are found only in a few words. At least two-thirds of the words that are given in the Dictionaries of De Guignes and Morrison, appear to be made up of about twenty primitives.
p. It is reasonable to suppose that the earliest efforts at speech would be accompanied by expressive gestures, and that the earliest writing would employ images suggested by these natural gestures. We accordingly find, in all known systems of picture writing, that different portions of the human body occupy a prominent position. And all the organs which have names corresponding to those of the Hebrew letters, -the hand, hollow hand, eye, mouth, ear, head,

[^1]tooth,-are represented in the Chinese hieroglyphics, under a gradation of forms, some of which agree with common forms of the corresponding alphabetic letters.
q. The hand was a prominent hieroglyph with the Egyptians as well as with the Chinesc, and in each language it appears to have been employed in some form to represent the sounds of $\mathrm{C}, \mathrm{G}, \mathrm{K}, \mathrm{E}$, and T.
r. The most ancient alphabets exhibit either an entire absence or a dearth of vowel sounds, and it seems probable that the characters that subsequently became vocal were all at first consonantal. The alphabet that was carried by the Pelasgi into Italy, probably about 1400 B. C. [See Pl. I], contained only the vowels A, E, I; hence it has been inferred that these were the oldest vowels. As their forms may all be derived from Chinese characters signifying "foundation" or "support," the idea seems plausible that they were introduced after the invention of other letters, as supports or foundations for the sounds of the mute consonants.
s. Nany of the Egyptian and Chinese hieroglyphics exhibit a close resemblance that appears to indicate a common origin. Instances of this resemblance may be found in the Chinese Rad. 8, Tow, denoting "top," or "head;" Rad. 10, Jin, which is usually interpreted "man;" Rad. 14, Meil, "a cover;" Rad. 17, Kan, "gaping;" Rad. 75, Muh, "tree;" Rad. 102, Teen, "field;" Rad. 119, Me, "rice." In nearly every case where both the Egyptian hieroglyphs and the Chinesc characters exhibit an alphabetic resemblance, the Chinese resemblance appears to be the closer of the two.
t. Some of the hieroglyphs would represent the same letter in Egyptian and Chinese. Thus the Chinese Kan might be substituted for an Egyptian K [Pl. I, fig. 10]; one of the Egyptian representatives of M, resembles the Chinese Muh, "a tree" [I'l. I, fig. 12, No. 1], or Me, "rice" [Pl. I, fig. 12, Nos. 2, 3, 4]; the serpent L of Egypt [Pl. I, fig, 16], reminds one of the dragon Lang of China; the leafy Sh [Pl. I, fig. 14, No. 2], and the star S, find marked analogues in the Chincse Show [Pl. I, fig. 14, No. 1], and Sing. In one instance at least, two of the Egyptian forms for the letter M [P]. I, fig. 12, Nos. 5, 6], seem to be accounted for by two forms of the Chincse Rad. 119, Me, "rice." [Do., Nos. 3, 4.]
u. If the supposed derivation of I and θ from the image of the sun (see Proceedings A. P. S., 1861, p. 8), is correct, an interesting harmony is traccable in the Egyptian, Greck, and Chinese, through the scarabaus which represented the sun, and was also used
for the letters : and 0 , -the rising sun, which was employed both for H and θ,-the Greek words " H, the sun, which resembled the θ in form. [Pl. I, fig. 32.]
x. The rounded shape of the mouth in pronouneing O and U , makes the open mouth, or the eye, or any other round object, a natural symbol for those sounds. In the Chinese forms that represent mouth, eye, and revolving, may be found fac-similes for nearly all the alphabetic representatives of O, U, and V. Even the curve or hook, which the Hebrew I was supposed to denote, was represented in Chinese by one of the characters for mouth.
y. The Chinese may perhaps furnish a clue to some lost aiphabetic forms, and some unexplained Egyptian symbols. Thus the ancient form of Z is said to have been \mathbb{Z}. These two forms are both employed in writing the Chinese Kung, Rad. 48. [Pl. II, line 7, Nos. 3, 4.] The Egyptian symbol of life, the crux ansata, may be readily formed by placing the Chinese Sze, "self" (O), upon Ting, "to support" (T), as if to imply that which is living or self-supporting. This combination is actually employed in the Chinese I'u, "to give matually." [Pl. I, fig. 15, Nos. 2, 3, 4, 5.] The Chinese characters, Shih, "tongue," [Do., No. 1], and Tsze, " child" [Do., Nos. 6, 7], have analogous forms, and the former is added to the radical Shwuy, "water," to form the word Hwŏ, "living; to vivify." The Egyptian winged sun [Pl. I, fig. 18, No. 4], may perhaps be etymologically connected with the Chinese Seih, "what existed in time past; anciently;" " custom; habit." [Do., Nos. 1, 2, 3.] The Chinese open mouth, "Kow" [Pl. I, fig. 17, Nos. 1, 2], has the same phonetic value, and nearly the same form as the Egyptian K. [Do., No. 3.]
z. In attempting to penetrate the mists of the pre-historical past, it is desirable to make use of every clue that may promise to furnish any guidance. Sueh a clue has been given us in the names of the Hebrew and Greek letters, and the significance,-partly well established, partly hypothetical,- that has been attached to those names. Plate II exhibits a few of the Chinese forms, whieh seem, both by shape and meaning, to have the most obvious connection with those employed by other nations.
1.* ふ. The Hebrew Aleph is said to have denoted "an ox ; a leader; a prince." Some writers have supposed that the letter was

[^2]modelled from the outline of an ox's head, a supposition that seems somewhat plausible, if we examine the head of the hieroglyphic oxhide in Pl. I, fig. 72. But the Chinese archetypes in Pl. II, line 1, all of which appear to denote either foundation, begiuning or head, seem to furnish a more marked correspondence with the most ancient forms of the first letter of the alphabet.
2. コ. Beth, "a house ; a place; a box." The Chinese archetypes in the second line denote, 1 , "a receptacle;" 2, "an inclosure ;" $3,4,5,7$, " a mound;" 6 , "a house."
3. 2. Gimel, "a camel." The 8th, 9 th, and 10 th forns in line 3 of the archetypes, are derived from Rad. 16, "a support," and Rad. 8, "a top, or head," denoting "that which supports the head ; the human neck; the throat; strong; unbending;" \&c. The remaining forms denote either Ting, " to carry," or Keu, "a carriage."
4. 7. Daleth, "a door." The 5th and 6th of the Archetypal forms represent a door ; the 1st and 7 th appear to have been derived from the outline of a knife or hatchet; the 2d, 3d, and 4th denote a mouth or opening. The 18th Chinese radical is Taou, "sword; knife." [PI. II, 1. 22, fig. 6]. The form of the radical is strikingly like that of the Hebrew Tau, and its name furnishes the nearest monosyllabic approach that the Chinese can make to the pronunciation of the Sanserit root dal, "to cut ; to divide."* The Hebrew טלע, "to cleave," appears to connect these several meanings, and to render it probable that the earliest hieroglyphic representative of the dental sounds was either "a cleaver," or "a cleft."
5. त. He, "hollow." The archetypes appear to be all traceable to different modifications of Rad. 16, Ke, "niche ; support ;" and Rad. 21, Pe, "ladle."
6. ו. Vau, "hook." The Chinese forms signify either "hand," "claw," " angular," or "hooked."
7. i. Kayin, "armor." The 3d and 4th arehetypes are forms of Rad. 48, Kung, "work ; art." This radical is sometimes represented by a hand. The others may be derived either from the hieroglyph of a hand, or of something carried in the hands,-as a bow, a child, or a shield. That the primitive idea was that of carrying, is rendered the more probable from the relative positions of the Latin, Hebrew, and Greek letters, $\mathrm{C}, \lambda, \Gamma$, and $(\mathrm{A}, \mathrm{i}, Z$.
8. п. Hheth ; meaning doubtful. The Chinese forms may be derived from "table," and "sun."

[^3]9. ט. Teth, meaning unknown. The archetypes are all employed to represent the sun.* Forms somewhat similar are sometimes used for the mouth. The Egyptian character for "splendor," is sometimes written nearly like Δ, and sometimes nearly like the fourth archetype.
10. '. Yodh, "hand." The third archetype sometimes signifies "to put aside; to reject." The other three are different forms of the hieroglyphic hand.
11. כ. Kaph, "hollow hand." The Chinese characters signify "hollow; opening or separating; branching." The first and second forms are sometimes used for a hand in the act of grasping; the fifth, which is one of the modifications of Rad. 75, Muh, "a tree," appears to be the archetype of the sixth and seventh alphabetic K's.
12. ל. Lamedh, "to instruct; expert." The archetypes are all forms of Rads. 9 and 10, which are both called Jin, and are both evidently modifications of a single radical. The ordinary definitions are "man; high;" but "top; head or covering," appears probably to have been the primitive meaning. The same primitive often assumes the form of R [Pl. II, l. 20, figs. 1, 3]. The phonetic connection of L and R , renders it probable that the ideas of "instruction" and "head" may have been associated in the minds of the inventors of the alphabet.
13. ๖. Mem, "water." The first three Chinese forms denote "water" or "a channel." The fourth and fifth represent a bud or shoot. The sixth is one of the forms of Rad. 119, Me, "rice," to which reference has already been made.
14. נ. Nun, "fish ; snake." Archetypes 1, 2, 3, 4, and 6, are different forms of the Chinese character Nae. M. Abel-Rémusat, \dagger in a letter to Baron Humboldt, treats somewhat fully of its various meanings, all of which seem to involve the idea of flowing, connection, or continuance. The third and fourth forms might easily be imagined to represent fishes or snakes, but it seems more probable that they were derived from the hieroglyph for "water," which is one of most common Egyptian representatives for the sound of n. In some Chinese words (the word King, for instance), water is depicted under a gradation of forms, some of which are precisely like the Egyptian. The Egyptian hieroglyph for "Nile" or "river," is made up of two characters, one of which resembles the Chinese Nae, and

[^4]the other may have been intended for a receptacle or mouth (Coptic Lo). It may, therefore, have been designed to express phonetically the Greek word Nechoc. The curved stroke at the right of the sixth form, which corresponds precisely with some of the most common alphabetic N's, forms also the principal part of the Chinese characters Kaou, "air, vapor," and Yen, "a long journey." The fifth figure, Sin, "a heart," would, according to the rules of Chinese orthography, represent a final N , and it may be the archetype of the heart-shaped N in the Punic inscriptions.
15. ס. Samech, "prop." The first figure in line 15 represents a prop or support; the others are forms of the word San or Sam, "thrce."
16. y. "Ayin, "eye." The Chinese word Yen, "an eye," may be the root of "Ayin. The third archetype is one of the most common hieroglyphs for the eye; the others denote either the mouth, or whatever is round or rolling.
17. э. Pe, "mouth." All of the Chinese forms in line 17 are employed to represent the mouth. In the Chinese word Too, the primitive which denotes " mouth" or "inclosure," is written in the various forms of $\beth, \Xi, \mathrm{P}, \mathrm{B}$.
18. 3. Tsadhi, "locust?" Tsaou Chung, in Chinese, signifies "a locust." The archetypal forms represent a sharp, shrill, " cutting" sound.
19. p. Koph, "ear." The Chinese characters represent cither "ear" or "orifice."
20. 7. Resh, "head." The archetypes are all found either among the forms of Rad. 181, Heě, "head," or in the outlined heads of animal hicroglyphs. [Pl. I, figs. 63, 64, 78.] The word Heě is as near an approach as the Chinese can make by a single utterance, to the pronunciation of the Hebrew monosyllable Resh. The character P , which is found in lines $17,18,19$, and 20 , is usually employed to represent Rad. 26, Tseĕ. The Tseĕ was an instrument of stone, horn, or bamboo, by which officers were appointed or authorized to act. After having letters engraved upon it, it was cut through the middle; one half was retained at court, and the other given to the person appointed. . The same character is sometimes employed for Fow, "a mound," and for Chung, "the middle; within ; half," and it forms the principal part of the word Ling, "to order ; to enjoin." Chung is commonly represented by a mouth divided by a line passing through its centre.
21. ש. Shin, "tooth." The archetypal resemblances do not point
 \qquad
Pthen ention

 2 . $-1+2+2$
athen $x+2+-$

$\operatorname{dat}+2+2$

$\sqrt{2+4}$
$\overbrace{0}$ 141 $-\square \xrightarrow{-1}$

 $\operatorname{lit}+2$ 1-

 $+4$ $4-20$
 7 To路

PLATE I ．
Chinese and Egyptian Hieroglyphs．

 $31 \varnothing 32 \theta, \odot 33$ 米 34 ※ $35 \approx 36$ 新
 43 白 44 五 45 因 46 为 4 而 48 ※

 61 H， 51562 \％

63 韋
64 自 65 平 66 酉

Pelasgic Alphabet．（About 1400 B．C．）

 P；1．R； $1 . \quad S ; 2 . \quad$ ；t．

PLATE II．

Chinese Archetypes．

 152三そう己
160 © ©（2）∇U
1）$刀 二 P \gamma \gamma B$
18\}トP
1999P4
ョロスクスフア人 勺大
っは以 $22+T \leftarrow \uparrow \times 丁$

Ancient Letters．

so strongly to a single primitive, as in the case of some of the other letters. Analogues are found in the characters which represent mountain, mouth, teeth, arm, and water. The alphabetic resemblances between the various forms of M and Sh (lines 13 and 21), would seem to point to "water" as the carliest symbol of the two sounds.
22. ת. Tau, meaning doubtful. The idea of cutting or piercing, appears to be conveyed by each of the Chinese forms. (See remarks on line 4 above.)

EXPLANATION OF THE HIEROGLYPHS ON PLATE I.

(For Nos. 1 to 18, see references above.)
19. Taou. A knife. 53. Yu. Wings.
20. Tseih. A battle-axe.
54. Urh. Ear.
21. Kow. A mouth. 55. Juh. Flesh.
22. Yer. Hand. 56. Chin. Official cap.

23, 24. Yue. Moon. 57. Pe. Nose.
25. Neu. Woman.
58. Kew. Mortar (r. 86).
26. Tsze. Child.
59. Shih. Tongue.
27. Shan. Mountain.
60. Tsaou. Herbs.
28. Chuen. Channel.
61. Chuen.* Boat.
29. Kung. Bow.
62. Yen. To speak.
30. Sin. Heart.

63, 64. Shin. A body.
31. Wăn. A painting.
65. Keu. A carriage.
32. Jih. Sun.
66. Yew. Liquor.
33. Muh. Wood.
67. Mun. Doors.
34. Moo. Mother.

68, 69. Chuy. A short-tailed bird.
35. Ke. Vapor; spirit.
70. Yu. Rain.
36. Shruy. Water.
71. Fe. False (v. 7t).
37. Ho. Fire.
72. Kih. A hide.
38. Pan. A support.
73. Неё. Head.
39. Ya. Tooth, tusk.
40. Neu. Ox.
74. Fe. To fly.

75, 76. Show. Head.
41. Wa. A tile. 77. Heang. Fragrance.
42. Teen. Field.

78, 79. Yu. Fish.
43. Pih. White ; pure.
44. Ming. Dishes.
80. Neaou. Bird.
45. Nuh. The eye.
81. Mang. Frog.
82. Ting. A tripod.
46. Ho. Grain. $83,8 \pm$. Tseō. Sacrificial cup.
47. Leih. To erect. 85, 86. Che. Teeth.
48. Me. Rice. 87, 88. Lung. Dragon.
49. Chuh. Bamboo. 89, 90. Kwei. Tortoise.

50, 51, 52. Wang. Net.

* The first form is Chinese, the second Egyptian.

In the varied character of the resemblances that have been thus briefly pointed out, extending, as they do, not only to all the customary forms that are found in memorial inseriptions, but also to the modern running hand, there seems to be a mass of circumstantial evidence, which leads almost irresistibly to the conclusion that the whole history of the invention and gradual perfection of alphabetic writing, must be still preserved in the literature and monuments of China. Of the antiquity of the Chinese Tsaou Shoo, or cursive seript, and the recent introduction of similar forms into our own writing, there can be little doubt. It seems to be established beyond any reasonable cavil, that the former has been in use for at least two thousand years. There is a noteworthy coincidence between the date of the Saxon ramning hand (in the eighth or ninth century), and the Augustan age of Saracen literature and empire, which renders it probable that the learned Mahometans may have communicated to the scholars of Europe, a knowledge of the rapidly-formed letters that had long been used in Asia, and that the advantages arising from their use were so evident as to lead to their speedy general adoption.

Extracts from a letter were read from Prof. J. D. Whitney, geologist of California, relating to the survey of that State, promising the publication soon of one or two valuable volumes of reconnoissance, to be followed by special reports in due time, at the order of the Legislature. "Our results," Mr. Whitney writes, "are, I think, likely to interest the geological world quite strongly. We have fomd the geology of California to be very different from what it had been represented to be by the Pacific Railroad geologists." Mr. Whitney expects to spend the spring months in additional fieldwork in the Sierra Nevada, before publishing.

Professor Lesley communicated a notice of a remarkable coal mine or Asphalt vein, cutting the horizontal Coal-measures of Wood County, Western Virginia.

Mr. Jesley said, that through the kindness of R. H. Gratz, Esq., of Philadelphia, a descriptive letter and a map had been submitted to him, which exhibited geological faets of more than ordinary interest to those who are studying the origin of the rock-oil deposits of the West. This letter agrees with previously received, but vague, reports of a true rein of bituminous coal or bitumen. The curious points of the case require careful investigation; but there seems to be no good reason to doubt the essential correctness of the statement.
The mine is situated on a four hundred aere tract of woodland (oak, elm, maple, waluut, \&c.), the position of which, in relation to the rivers and railroad of the neighborhood, will be best shown by the accompanying map. Plate III. It may be well to premise a few words about the coal-measure region in the heart of which it lies.

By referring to any map of all Virginia, it will appear that the North and South Branches of Hughes River unite and flow into the Little Kanawha about thirteen miles (in a direct line) above its junction with the Ohio at Parkersburg. The mine itself is somewhat over twenty miles (in an air line) southeast of Parkersburg, and a little under eight miles in an air line, south 4° west (both true and magnetie), from the bridge of the Parkersburg Branch of the Baltimore and Ohio Railroad over the North Branch of Hughes River.
Two peculiarities mark this "coal rein." 1. It is rertical, while all the stratification of the country is nearly horizontal; and strikes S. $78^{\circ} \mathrm{W}$. (N. $78^{\circ} \mathrm{E}$.), whereas the strike of the country is $\mathrm{S} .35^{\circ}$ to $40^{\circ} \mathrm{W}$. (N. 35° to $40^{\circ} \mathrm{E}$.) 2. It is a solid bitumen-vein rather than a coal-bed.

1. The country of the neighborhood is that of the central part of the great synclinal, which crosses the Ohio below Pittsburg, and stretehes down through Western Virginia parallel to the Ohio River, into Eastern Kentucky. Aeross this broad and flat synclinal of coalmeasure rocks there flow from southeast to northwest, to fall into the Ohio successively, beginning at the north, the branches of the Little Kanawha, of the Great Kanawha, the Guyandot, the forked branches of the Great Sandy, (and then in Kentucky) the headwaters of the Kentucky, the headwaters of the Cumberland, and finally in Tennessee, the headwaters of the Caney. All these fanshaped water-basins have their highest or southeastern limit defined
by the strike (N. E. and S. W.) of the more upturned rocks of the southeastern side of the synclinal. With the exception of the Great Kanawha main stream, a line drawn along so as just to touch the extreme tips of all the outermost twigs of these water-trees, will give the southeastern limit of the great Alleghany Mountain or Cumberland Mountain coal area. Their waters collect in flowing northwest, break through the central measures and higher coals of the synclinal, and either join the Ohio (which flows along the depression between the upper and lower coal systems of the True Carboniferous), or the Kentucky and Cumberland Rivers further south.

From this short description it may be inferred, and it is a correct inference, that this belt of synclinal, is in great measure an irreclaimable mountain wilderness; a labyrinth of narrow hog-back ridges and steep, deep, winding vales, providing spaces for agriculture only along the narrow margins of the principal streams, and at here and there a little upland plain, caught in between the headwaters of half a dozen fan-shaped systems of drainage; but all the rest covered with an everlasting forest, folding over the furrowed face of the earth. The region consists in fact of myriads of secluded glens, surrounded by stair-like cliffs from four to eight hundred feet in height, and separated by spicule of mountain, which shoot out from the more central water-divides, like crystals of ice over the surface of a pool. The extremely tortuous course of the principal streams is illustrated by the map. They do not flow from side to side of wide, flat valleys, but around sharp mountain prongs, which point across towards opposite open ravines or valleys of considerable length. These prongs descend from the dividing high lands, like the spurs of the Pyrenees from the central ridge, but in long steps, the strata being nearly horizontal, and each sandrock in the descending order carrying the nose out further than the one above it. Narrow terraces carry the outcrops of the long steps of the nose, round each side of the prong along the steep side of the valley.

The coal-beds pass horizontally through the pronglike ridges from valley to valley. Some of these ridges run as narrow on top and as regular as railroad embankments, for three or four miles, and in nearly straight lines, between equally straight vales terminating bowlshaped against some cross ridge.

It is across such vales and dividing ridges, that the Asphaltum vein of Wood County makes a straight course, A B upon the map, " 2323 feet long, as at first measured, but since then traced in both directions still further, so that now it is known to extend more thau

BITUMEN VEIN, W. VA.

two-thirds of a mile." Explorations beyond this line have failed to find it. Its outcrop, four feet ten inches thick, was discovered crossing a ravine fifty feet wide at the bottom, and rising on each side with slopes of nearly forty-five degrees. On one of these hillsides at a height of ninety feet, the outcrop showed the same thickness, but at a height of one hundred and eighty-five feet, it was found to be but two feet six inches thick. It is not certain that this diminution is in a vertical direction; it may be lateral; for the slope between the ninety and the hundred and eighty-five feet levels is more gra. dual, especially upon the western side.
In the bottom of the ravine, a vertical shaft was sunk to a depth of thirty-four feet upon the vein, which continued uniformly four feet ten inches thick, the asphaltum being filled in, pure and clean, without the least admixture of earthy or foreign ingredients, between the smooth and almost perfectly vertical walls of yellowish-greenish sandstone, lying in horizontal layers, through which this gash or fault was once no doubt an open fissure, communieating with some reservoir of coal oil, which still, it may be, lies beneath it undisturbed. The most interesting part of the phenomenon for structural geologists is this gash.
2. The substance which fills this gash-fault in the coal-measures of Northwestern Virginia, resembles the glossiest, fattest caking coals, and has a decidedly prismatic structure ; breaks up into pencils, with flat, lustrous faces and sharp edges, but the faces not set at any fixed angles to each other; so that the effect upon the eye is rather that of a fibrous than of a prismatic structure. At the same time there is not the slightest appearance of layers, but the aspect of complete uniformity or homogeneity. Pieces are taken out, it seems, a foot in diameter; and that portion of one of these pieces which I have, shows a plain face on one side, as if it had encountered one of the walls, and is covered with a delicate film of a dead black substance like charcoal dust, which is probably the dust of the rein substance itself.
"Pieces lying at the surface of the ground are said to yield as much oil as specimens taken out six or eight feet down. By the ordinary dry distillation, the substance is reported to yield as much oil as the Albert coal. By a different process, the first and only trial, at which 600 pounds in one charge was used, $44 \frac{1}{2}$ gallons of superior oil was obtained. Retorts are now upon the ground."

By an assay made by Mr. B. S. Lyman, of Philadelphia (the amount of hydrocarbon soluble in benzole being about one-half of the
whole) the volatile matter (mean of two assays) was 47.11 per cent., Coke (52.71, 53.07) 52.89; Ash (1.65, 1.81) 1.73.

There seems to be no escape from the conclusion that the substance filling this vertical vein is a product of the gradual oxidation of coal oil once filling the open fissure. It is not impossible therefore that the lower regions of the fissure are still filled with liquid oil; and that we may see in this instance an illustration of the condition of things far beneath the surface of the coal oil regions of Western Pennsylvania and Eastern Ohio. The vast quantities of oil delivered by the flowing, the blowing, and the spouting wells require fissures of this kind, either never opened up clear to the surface, or else once opened and now reclosed, or else filled in with detritus. The different depths at which closely neighboring wells begin to spout or to flow, oblige us to imagine similar fissures at oblique angles. If Sterry Hunt's hypothesis be accepted, that the Corniferous Limestone is the mother rock of the oil, such fissures become still more needful to bring the oil to the surface, from the vast depths at which the Corniferous Limestone underlies the True Coal-measures.

Vanuxem first described the films and buttons of "anthracite," as he called it, with and in the quartz crystals of the Calciferous Sandrock of New York, at the base of the Silurian system. Mr. Hunt describes the veins and fissures of all the limestone, shale, and sandstone members of the great Quebec Group (which is the enlarged equivalent of the Calciferous in New England and Canada) as frequently either lined or filled with a similar substance. Sometimes the varnish lining has cracked in shrinking; sometimes botryoidal masses of it have been left; sometimes hundreds of pounds of it are packed away solid in the crevices. In one exceedingly instructive case the vein of bitumen, inclosed in walls of rock crystal, is itself cut by thin seams of quartz.*

[^5]In these older instances of bitumen veins, we see small prototypes of the large vein under consideration.

The point of the phenomenon most interesting to structural geologists is this: Two opposite deductions are possible from the facts as made known, on the one side in favor of the rast antiquity of the coal oil, and on the other side in favor of the recent denudation of the surface. If we have in this vein a deposit of coal oil hardened by time and the absorption of oxygen, it is certain that the cutting out of the ravines across which it lies, must have taken place subsequently; for the outcrop rises to a height of nearly two hundred feet on each side of the bottom of the ravine in which the shaft is sunk. I do not learn from the report whether detached blocks or pieces of the bitumen occur upon the surface, or in the allurium of the vale below the crossing of the rein. But that is of no consequence to the principle. The valleys which it crosses must be younger than the vein, if the rein was filled with fluid oil. Hunt shows plainly (see Sill. Journ., March, 1863, p. 167), that the oil which fills the fossil casts of particular exceptional strata in the Lower Devonian Formation (as in Bertee Township on the Niagara River opposite Buffalo), must be an original deposit, and not a subsequent infiltration or exudation, inasmuch as it has lined with oxidized bitumen the cavities of the fossil casts in this stratum, and not those in similar strata abore and below.

All that we know of the grooving of the surface of our palæozoic areas consents to the great antiquity of the action, whatever that action may have been. To demonstrate the antiquity of the Corniferous coal oil, is merely to give more room for the antiquity of the oil. Yet, the denudation, however ancient we may make it, must still be kept more modern than the antecedent formation of the coal oil and its change to bitumen.

The date of the formation of the oil may be placed anywhere beyond the close of the Palaozoic era, even as far back as the beginning of the Devonian, or even in Lower Silurian times; since the Quebec Group is also the home of oil. The denudation of the surface of the coal areas cannot of course be put back beyond the uplift of that area into the air.

There remain two hypotheses for dating this denudation. One class of geologists, the Catacly'smists, give the date of the uplift as the date of the denudation ; make the two phenomena related and dependent parts of one great action. The other class, the Secularists, regard the present face of the country as but the latest phase of an
infinite scries, beginning at the uplift and still in progress. An intermediate view, held perhaps by some eclectics, supposes a succession of denuding actions of unknown force and indefinite number.

As to the Appalachian region of the United States, I think that the principal special objection to the theory of one cataclysm (apart from general considerations) has not been mentioned, or at least clearly stated. And yet it seems to me of great force. It is a deduction from the fact that the estuary bed of the New Red deposit, taken as a grand whole, can hardly be regarded otherwise than as a part of the Post Carboniferous denuded surface, and therefore subsequently formed to the great cataclysm supposed by that theory to have produced that surface. For the surface of the New Red is eroded exactly in the style, and in the direction of, and in entire harmony with the erosion of the surface of the Coal ; which of course would make the supposed cataclysm subsequent to both. Two cataclysms being therefore required, a new difficulty appears.

Supposing the first cataclysm to have eroded the palæozoic areas, so that the deepest valleys of erosion nearest the Atlantic seaboard could be filled in with New Red deposits, why were these deposits restricted to the New Red estuaries, so well known as to need no description here? Every one is aware that New Red is nowhere seen behind the range of the South Mountain or Blue Ridge. Yet there are plenty of gaps wide and deep enough to let it through. If it had ever been deposited in the great Lower Silurian Valley behind that range, no cataclysm can be supposed to have acted with such consummate skill and completeness, that not a hillock or corner bit should have remained to tell the story of where its outspread masses had originally lain.

If now, to meet this difficulty, the Cataclysmist brings down the date of his first agency to Post Secondary days, and imagines the New Red rocks to have been excluded from the Great Valley because in fact, no such valley, and no gaps leading into it, had as yet been formed, he not only encounters the old difficulty of providing its estuary bed for the New Red, but in addition to that, the awkward statement that the gigantic anticlinals of the Palæozoic age, once made, remained, uplifting their more than Andean or Himalayan masses in the sky, (with all the climatal consequences of such a supposition), during all the ages through which the so-called Permian of Kansas, and the New Red, and the so-called Oolite of the Atlantic seaboard, were depositing their layers.

And when he has settled all this properly, the discussion will re-

open upon him in the same form anew, so soon as the denudation of the Cretaceous and Tertiary surfaces come to be regarded as in like manner in harmony with those of older dates.

At Cornwall, six miles south of Lebanon, hills of New Red Sandstone, three, four, and perhaps five hundred feet high, stand, looking in upon the great Silurian plain, like Peris at the gates of a Paradise they cannot enter. If along this line a fault has in fact carried the New Red down to the present level of the Silurian plain, the denudation of the two surfaces is nevertheless so far one phenomenon, that in its present condition it is to be explained by reference to actions subsequent to the deposit of the Conglomerate, or uppermost New Red layer, the so-called Potomac marble. But the hypothesis of a fault along the south base of the South Mountain is a pure fiction of embarrassment. If it existed anywhere, it must extend several hundred miles, and be approximately a straight line. The most cursory glance at the geological map of Pennsylvania will satisfy any one that no such fault exists. The succession of spurs of the mountain range forbids it. The gophered edge of the New Red on the Lancaster County limestone forbids it, and shows how entirely superficial the New Red is. No river section shows the fault. It is a pure fiction. The northwest dip of the New Red against the Azoic mountain range is still a problem to be solved.

The hypothesis of suboceanic erosion, contended against by the geologists of the United States almost from the beginning, is fast losing, if it has not lost altogether its hold upon the European mind. The conviction is well established, which we freely expressed jears ago, that the ocean is a builder and not a leveller. Like the quietistic and subjective letter M, which was its symbol in ancient literature, the main, the murmuring Typhon, has always been the absorber, and the mother of multitudes. While the fringe of foaming breakers, the Herculean Hydra, and in fact all river water, the rushing and hissing Typhon, of which the letter S was symbolic, has always been the destroyer, the enemy of the established, the ravager of the surface. It was upon this basis that some subaerial cataclysmic hypothesis like that of Professor Rogers came to be favored by those who knew the grandeur of the work which had been done by the denuding force whatever it was, among the palæozoic anticlinals of America; and who felt the perfect harmony which reigned over the whole expanse of the phenomenon, from the Tertiary seaboard of the Atlantic and the Gulf, past the beds of the great freshwater Devo-
nian and Silurian lakes, to the original shores of the Laurentian Continent.

We cannot regard, therefore, without some natural chagrin, the latest treatment of the subject by Professor Tyndale and Professor Ramsay, of England; for these accomplished observers not only take up our own old views with all the empressement of new discoveries, but make what seems to us the very absurd attempt to carry the petty energies of mountain floods and local glaciers up to the work of excavating, not merely lakes like those of Como, Constance, and Geneva, but such seas as Lake Huron and Lake Superior. It is gratifying, however, to see that such views can be refuted by European observers, who have never encountered the phenomenal problems of America. The impossibility that a moving glacier after descending to sea level, should excavate the bed of a lake, and continue to move up and over its farther end, even taking the smallest Alpine lake known for an example, is admirably demonstrated by Mr. Ball in the February number of the London, Edinburgh, and Dublin Philosophical Magazine for 1863. If this be not possible for the tarns among the valleys where glaciers are at home, how can it be possible for lakes and seas, where the existence of glaciers at any epoch is a theory? And how reekless of all consequences must that theory be, which reads an incantation to these iey demons, to accomplish the symmetrical erosion of a triangular area of earth-surface a thousand miles on each side long, the southern angle of which touches the parallel of 33° !

Professor Ramsay calls attention to the remarkable fact that the lakes of Europe and America seem to be confined to the scratehed and grooved portion of the hemisphere, and that they are not found further south than the drift, except in Alpine, that is to say, in glacial regions. This is a coincidence, indeed, which ought to harmonize the two phenomena under some theory; but not necessarily subordinate the one to the other as effect and cause. I have no satisfactory explanation to give for the coincidence. The special reasons for the existence of each separate lake can be easily pointed out. The damming back of the waters of the New York Devonian lakes, including Erie and Huron, are due to the gentle northward rise of their floorrock. Lakes in the same soft Devonian measures, are numerous along the valley of Pennsylvania, at the foot of the Alleghany Mountain, but only where the measures are gently inclined. Lakes disappear from the map as the eye passes southeastward over the more upturned regions. Stcepness of dip is hostile to deep excavation.

The reverse is true of erosion above water-level. Steepness of dip is favorable to aerial disintegration, to the dissection of stratification, to the subdivision of one massif into several, and of one hillock into many; hence to the general degradation of the surface under air. But under water the reverse is true.

In the Laurentian and Huronian, Scandinavian or Azoic regions of the North, where distortion and plication have revelled from the beginning to reduce things to auarchy, and where alternate potash rocks and limestones form the boldest contrast of endurance and decay, lakes abound. A clean, smooth drainage system, worked out so completely (without stating the agency) as to leave no holes, nor cul de sacs pointing in the wrong direction, nor crooked lakes, is possible only when the stratification is clean and in good order, cutting equally and smoothly in all directions according to the force, and permitting the law of compensation to have free course in the establishment of a common and gently declining niveau of reference to water-level. But any conceivable erosive agency, cataclysmic or secular, must encounter a million contretemps, in smoothing off its work over a country like Canada, where no outcrop runs far without doubling like a hare. Sir William Logan has shown that the crooked lakes and lake-like rivers of that country conform to the plications of the primary limestone belts.

Mr. Ball's own hypothesis of an original fault structure for the lake system of the Alps is not new, and is open to as much objection on other grounds, as the theory of Professor Ramsay which he overthrows. If applied to the Devonian lake system of New York and Pennsylvania, and therefore, of course, to the thorough-cut valley system of the Carboniferous plateau of the Alleghany Mountains of Northern Pennsylvania, it will not find a fact to stand upon. Not a trace of fault structure is to be seen over all that immense region ; yet the erosion is in straight lines, north and south, and from five hundred to a thousand feet deep. Also not a trace of original glacial action can be found. Diluvial strix are rare ; moraines and taluses are wanting. Not one has yet been recorded, if any exist, nor have I ever seen throughout that region, any resemblance to one which did not resolve itself on examination into a barrier outcrop, slightly masked by soil or local drift; and esen instances of this kind are rare.

On the other hand, throughout that whole region, the Lyellist can find no evidence of a slow wear and tear through the ages. The region is swept too clean for that. There are no piles of detritus, no
cones at the mouths of ravines, no plains of sand and clay, no deltas at the embouchures of streams and heads of lakes, such as, in the Auvergne, and in the Alps and Pyrenees, impress the traveller with an instantaneous and irresistible conviction of slow wear and tear. On the contrary, the walls of the valleys, high as they are, are vertieal bluffs, alternating with taluses of angular blocks fallen from them; the bottoms of the valleys are clean; the lakes have steep shores, and the plains are covered with the disintegration of their own rocks. Everything one sees tells one story, and that the story of a cataelysm which, at one sweep, accomplished valleys, plains, and lakes, leaving next to nothing for all coming time to do, but to protect the surface with regetation, and to send an annual contribution of the meanest value by the rivers to the sea.

Two systems of valleys characterize the result, as we now study it. One parallel with the coast, and produced by the sweeping away of the tops of anticlinals from one to twenty miles wide and miles in height; the other a transverse system of river bottoms, sunk some few feet or yards below the longitudinal valley which they cross, and of deep, clean, straight gaps through the bounding mountains. It is demonstrable that these two systems are but two parts of one, and owe their origin to the same ageney, and at essentially the same time. The peculiar relationship of the rivers to the gaps is suffieient of itself to prove this. Not a fault has been demonstrated in any of these gaps. One fault transverse to the Tussey Mountain occurs near one gap, that of the Juniata, and as if, by its loneliness and exeentric position, for the express purpose of excepting to such a theory, if at any time one should be presented. It is not until the geologist has passed through the whole region, and has reached its southeastern limit, that he suspects a faulty gap. The Kittatinny or North Mountain is said to be faulted at the Delaware Water Gap, and at the Susquehanna; but so the Sharp Mountain was said to be faulted at the Swatara Gap, until careful instrumental work proved that the coal-beds on each side of the gap were not a hair's breadth out of line. A fault at the Susfuehanna is evidently absent, for the very outerops of the different sandrocks can be traced, at low water, from side to side. And the fault at the Delaware Water Gap is, I believe, nothing but an effect of perspective upon the eye, produced by the inclined lines of cliff, unsymmetrically wrought out on the two sides of the gap, because the cutting foree worked in a curve, produced by the presence of the expiring Red Hill anticlinal on its northern slope.

No. The excavation of the Appalachian surface has not been determined by transverse faults; but entirely by longitudinal flexures ; and has not been accomplished by glaciers; nor by rain and river water; still less sub oceano. By what then? I think much must be discovered before the question can be answered, if we reject subaerial deluge action. What for example do we know yet of the internal structure of those deep diluvions or alluvions which occur in our transverse river-bottoms, where they cross the longitudinal valleys of Devonian olive shale? They seem to be ancient lakes, excarated at the time the topography of the valleys and mountains was determined, and filled with river trash. As they occur in the transverse river valleys, they seem to own the rivers for progenitors. But being in line with the gaps, the occupation of them by the rivers seems, on the contrary, to be as fortuitous as the river-occupation of the gaps. Moreover, the present rivers are evidently the degenerate representatives of grander floods, and the silt of these depressions, judging by the surface, is of too gross and hasty a nature for collection by less than such original deluges. But supposing this also to be a fancy, what relation does the glacial hypothesis, which presumes to annul the necessity for a cataclysmic eroding agent, propose to bear to parallels of latitude?

Wherein does the valley of the New River or Kanawha differ from that of the Susquehanna or Delaware, except in having no New York corals or Canada syenites among its pebbles. In every structural feature they are alike; and like the ralley of the Tennessee in Alabama. There is no change in the height or constitution or form of the mountain plateau through which they cut. There is no change in the range to the southeast of them which can affect the question; for the Black Mountains of North Carolina, even if liable to suspicion as glacier-bearers, are far enough remored from the New River on the north, and the Tennessee on the south, to be of no account in this discussion. Is the glacial hypothesis prepared to defend its claims in Middle Alabama under the parallel of 33° ? If not, then it has no claims to any feature of the Catskill Mountains under the parallel of 43°, except their scratches; to which, so far as the genesis of mountains and valleys is concerned, it is quite welcome. Yet precisely this bonbon Professor Ramsay refuses it; for he maintains (against Dana), that the striæ at the Catskill Mountain House were made by icebergs floating down the Hudson estuary, and not at all by glaciers. There is a disposition manifested of late among the American geologists, of the New England school, to fill each of the
great valleys of the North with a great glacier of its own, naming them the Penobscot Glacier, the Connecticut Glacier, the Hudson Glacier, the Mohawk Glacier, the Susquehanna Glacier, \&c. In view of Kane and Hayes's discoveries of the present state of things in Greenland, and for easy accounting not only for such groups of east and west and north and south strix as appear at Cherry Valley, the Catskill House, and Wilkesbarre, but also for those which cross the polished summits of our highest mountain tops, such as the Penobscot Knob which looks down upon the valley of Wyoming, there is not the same objection felt now as was at first expressed against the Agassizan cope of ice for the hemisphere. President Hitcheock finds its reliquial glaciers in the valleys of Hampshire and Berkshire, and Professor Dana explains the absence of moraines now by the absence of any aiguilles to overhang and shed their stone-slides upon the back, or upon the edges of its subdivided streams.

The thus admitted absence of moraines, and the excuse adranced for it, return us unexpectedly to the starting-point of the discussion, the question. Could ice have fashioned our topography? No one doubts its ability to scratch and groove and polish. Can it excavate? And if it ean, what is the limit of its excavating power? Leaving the glacialists of the fixed-ice school and the floating-iee school to settle between them the force, frequency, direction, and exact modus operandi of striation, quite sure that they will at least agree on the dute of the phenomenon as very recent, we are left at liberty to revert to those more remote days, when the broad-backed anticlinals rose into the sky higher than any Alpine aiguilles or Andean volcanic cones; to speculate on, 1 , Whether they were unbroken vaults; or split along their axes; 2. If split, whether split completely down to water-level, or how far; 3. Whether glaciers could have been then formed at all; 4. Whether, if formed, they could excavate a valley five or ten miles deep into the heart of an unbroken anticlinal; or 5, Do more than polish the central gorge, if the anticlinal were broken; 6. How such a central glacier could escape from such a gorge sideways, or in any direction but endwise, at the limits of the crack; or 7. Fail to leave high walls, alpine ranges, peaks, aiguilles, and moraines behind it when it disappeared.
Surely the glacialist must startle back from such an incredible picture. The great obstacle in the way of topographical seience among geologists, has been an innocent ignorance of the titanic postulates upon the ground; and therefore, an inability to reconstruct in imagination the awful vaults of rock which have been removed from over

[^0]: * See Parer on Levonian Flora of Eastern America, Jour. Lond. Geol. Soc. November, 1862.

[^1]: * Sir William Jones (Asiatic Researches, Vol. II, p. 373), says: "As to the fancy of M. de Gugnes, that the complicated symbols of China were at first no more than Phenician monograms, let us hope that he has abandoned so wild a conceit, which he started probably with no other view than to display his ingenuity and learning." This criticism, flippant as it seems in view of the distinguished scholarship of the French savant, is perhaps justifiable, but the curious coincidences that M. de Guignes has pointed out, especially those between the names of the early Chinese and Egyptian kings, are such as to render it still an open question, not whether all the Chinese symbols were Phenician monograms (which no one probably ever imagined), but whether any of them may have been originally formed after the manner of the Egyptian cartouches.
 \dagger All the most important ones are giren in Pl. I, figs. 19 to 90 .

[^2]: * The figures in the following paragraphs refer to the lines that are similarly numbered in Plate II.

[^3]: * Compare Ger. thal; Eng. tale, deal.

[^4]: * V. ante, u.
 \dagger Nouveau Journal Asiatique, Vol. XI, pp. 273-282.

[^5]: * Hunt in Amer. Journal, March, 1863, p. 163. The force of the argument deducible from this fact, against the igneous, and in favor of the aqueous production of our quartz veins, will be felt at a glance. I cannot but express my surprise that Sir David Brewster should continue to claim as an argument for the igneous theory, the presence of two different elastic hydrocarbon fluids in cavities in topaz, beryl, and diamond, especially in regard to the permanent compression they have effected in the molecular structure of the walls of the cavities, as detected by polarized light. (Trans. R. S. Edinb., XXILI, i.) Yet M. Fournet supports his argument. (Comptes-rendus, LI, p. 42, LIII, pp. 88, 610; Geol. Lyonnaise, Lyons, 1861, pp. 533, 715, quoted by Sir David Brewster.) While M. Elie de Beamont rests for its refutation on the rolatility of the fluids, and the frerfuency of fluid-cavities in all quartz gangue rock. (Comptes-rendus, LIII, p. 83.) Sir David Brewster says that M. Fournet "has removed this difficulty" (Geol. Lyon., p. 536), but does not say how.

